
Investigating the Effects of Framework Design Knowledge in Example-based
Framework Learning

Daqing Hou
Electrical and Computer Engineering, Clarkson University, Potsdam, New York 13699

dhou@clarkson.edu

Abstract

Studying example applications is a common approach
to learning software frameworks. However, to be truly ef-
fective in adapting example solutions with high confidence
and accuracy, a developer needs to learn enough about the
framework designs. The empirical study described in this
paper investigates the effectiveness of a new approach to
framework learning, where example-based learning is aug-
mented with instruction on framework designs. Learning
framework designs up-front from an instructor helps devel-
opers acquire the necessary design knowledge and avoid
the time-consuming task of recovering such knowledge from
code and other artifacts. The particular question of interest
in this study is how characteristics of the framework designs
influence project outcome. 11 student projects are analyzed
using both qualitative and quantitative methods to charac-
terize the overall reuse practice and to detect salient pat-
terns that address the question. The contribution of this pa-
per is a set of well-supported hypotheses that can be tested
in future studies as well as their implications.

1. Introduction
The use of application frameworks may help reduce

development time and cost, and improve software qual-
ity [14, 15, 16]. To an application developer, the value of
a framework is in the solutions or features (both architec-
tural and local) which it provides. Because framework de-
signs tend to be abstract, feature-rich (for example, the 179
examples in the Swing tutorial would imply that at least 179
features of Swing are worth learning), and can be hard to
discover or understand, the initial effort invested in learn-
ing a framework can be very high for novices [8, 12, 13].

Example applications have been identified as an effec-
tive learning aid for an application framework [12, 18, 21].
Example applications show what the framework is good for
and point out features that the framework provides. Because
examples are concrete, they are easier to learn than the ab-

stract designs [12]. With examples available for manipula-
tion, developers can focus more of their attention on anal-
ysis and modification rather than search and construction,
which can be especially beneficial to novice learners. This
benefit can be explained by the interaction design princi-
ple of ‘recognition rather than recall’ [20]. Examples have
also been recommended as a necessary ingredient in effec-
tive teaching and learning, such as learning effective tech-
niques for problem solving [2, 3], or learning how to write
programs in a new programming language [17].

However, examples alone are not sufficient for the ef-
fective learning of application frameworks. First, although
examples may contain concrete solutions that are useful to
developers, they do not explicitly explain how the demon-
strated solutions are provided by the framework. Second,
the solutions contained in the examples may not exactly
fit the needs of the new application. They may be incom-
plete and only partially useful, overly complicated, or com-
pletely irrelevant. Thus, developers must be able to identify
and modify such example solutions in order to use them in
their own applications. Third, when the number of example
applications is large, it can be difficult to recognize which
ones are relevant to the application at hand.

Knowing framework designs may yield both tactical and
strategic benefits [7, 18]. Tactically, a developer will per-
form better in utilizing and adapting individual framework
features with higher confidence and accuracy. More impor-
tantly, knowledge of framework designs will also enable
developers to anticipate major architectural mismatch be-
tween the framework and the application to be built, when
making strategic decisions like adopting a framework. De-
sign knowledge helps developers focus on important design
issues early and avoid the trap of driving application devel-
opment by framework features [18]. Thus, to be truly effec-
tive in using a framework, a developer must learn enough
about the framework designs. (We consider serious, long-
term users of a framework. Short-term, casual users may be
able to make use of a framework opportunistically without
a serious investment in learning framework designs.)

One approach to learning framework designs is studying



design documentation and framework code. In a previous
study, Shull et al. investigated the effectiveness of two read-
ing techniques for framework learning (framework-design-
based versus example-based). A major difficulty reported
was that the design-based approach is too time-consuming
for novice developers to use because “the technique [for
learning framework designs] gave subjects no idea which
piece of functionality provided the best starting place for
implementation, or where in the massive framework hierar-
chy to begin looking for such functionality” [21]. They for-
mulate the hypothesis that a hierarchy-focused technique is
not well-suited to use by beginners under a tight schedule.
But the question remains: How can novices learn the de-
signs of a framework effectively?

The empirical study described in this paper investigates
the effects of framework design knowledge on applications
built by customizing examples and the implications on how
to teach framework designs more effectively. The main re-
search questions for this study can be phrased as follows:

Question 1. What are the characteristic effects
of framework design knowledge on applications
developed by customizing examples?

Question 2. What lessons can be learned for
effectively teaching frameworks?

This study followed Eisenhardt’s approach to building
theories from case study research [4], which was also used
in software engineering research, e.g., by Seaman et al.
in [19] and by Shull et al. in [21]. Since relatively little is
known about this topic, the goal of this study is to identify
important variables and relationships, not to test established
hypotheses. Our study was conducted in a classroom set-
ting where novices learned to use the AWT/Swing frame-
work [22] to build GUI applications within one semester.
We analyzed both qualitative and quantitative data from the
course to search for possible answers that address the re-
search questions. Thus, the contribution of this paper is a
set of hypotheses, along with supporting evidence, that can
be further tested in the future.

The remainder of this paper is organized as follows. Sec-
tion 2 surveys related work. Section 3 describes the set-
ting of this study and Section 4 research methods. Section 5
presents the hypotheses derived along with the details of the
quantitative and qualitative analyses performed on the col-
lected data. Section 6 discusses the threats to validity. Fi-
nally, Section 7 concludes the paper by answering the pre-
ceding two research questions.

2. Related Work
In addition to the most closely related study conducted

by Shull et al. [21], there is related work in the areas of em-
pirical study of framework-based development, framework
documentation, and tool support for framework usage.

Empirical study of framework-based software devel-
opment. Based on a case study, Morisio et al. [15] report
that both productivity and quality in framework-based de-
velopment can be better than in traditional development,
and that productivity increases massively when developers
learn more about a framework over time. Mohagheghi et
al. [14] report from an industrial setting that reused compo-
nents have less bugs and are more stable than non-reused
ones, and that bugs in reused components tend to receive
high priority. Hou et al. [11] investigate the connection be-
tween the designs of a framework and questions asked about
the framework, highlighting areas in the framework that are
poorly designed or insufficiently documented, and recog-
nizing inferior programmer practices.

Framework documentation. Johnson [12] points out
that framework documentation serves three purposes: in-
tent, detailed designs, and how-to instructions, and that pat-
terns can be used to provide all three. But framework doc-
umentation does not have to cover all three purposes to be
useful. For example, Froehlich et al.’s hooks [6] are a struc-
tured notation for describing how to use a framework, but
not its design or intent.

Gangopadhyay and Mitra [7] recommend an approach to
learning frameworks by concentrating on the framework ar-
chitecture rather than individual components. In particular,
they recommend the development of exemplars, executable
models that visualize important framework collaborations.

Schneider and Repenning [18] also emphasize the im-
portance of framework design knowledge and the danger
of ‘feature-driven development’, and suggest that paradig-
matic applications may be developed to facilitate the learn-
ing of framework designs.

Tool support for framework usage. Several re-
searchers have built advanced, wizard-like tools to assist
the use of frameworks. Fairbanks, Garlan, and Scherlis [5]
propose design fragments and tool support for captur-
ing, enabling, and enforcing the common patterns of
using a framework. Antkiewicz and Czarnecki [1] pro-
pose to use domain-specific languages to model framework
interfaces and automatically maintain the consistency be-
tween the model and application code. Hautamäki and
Koskimies [8] investigate specifying and automating the ap-
plication of specialization patterns.

3. Study Setting
To explore the role of framework designs in example-

based framework learning, the author ran a study into
framework usage as part of a software engineering
course that he taught Fall 2007 at Clarkson Univer-
sity. There were 16 third and fourth year undergraduates
(juniors and seniors) in the class. The main course objec-
tive is to learn component-based software construction in
visual environments. JFC Swing [22] was used as the teach-



Figure 1: Two representative editors selected from the 11 submissions. The left one is created by modifying the given exam-
ple application, and the right one has a completely new UI. (Figure better viewed online to see the visual effects.)

ing platform. Swing has been used in industry for almost
a decade and the author is reasonably familiar with its de-
sign. Its source code is available, which can be a learning
aid for some. Furthermore, written tutorials and numer-
ous examples are available for the framework. For example,
as of Java 1.6, the official Swing tutorial from Sun con-
tains 179 examples.

We believe that it is too difficult for novices to learn
the framework designs on their own, and, thus, some initial
guidance is necessary to orient them through the complex
framework. The first half of the semester was used to teach
Swing design. Our students were also encouraged to lever-
age the rich set of examples provided by the framework,
but our emphasis is on framework designs, not evaluating
reading techniques as in [21], although the reading tech-
niques were also taught. The lectures systematically guided
the students through the main design elements of the frame-
work (Table 1). This architectural focus was forced on us
because the size of the framework makes it impossible to
cover all of the details within the available time. Thus stu-
dents were expected to generalize what they learned in class
to similar scenarios in the framework. Selected examples
were demonstrated in class to facilitate teaching, and pro-
gramming exercises were given so that students could prac-
tice what they learned in lectures. Finally, a comprehensive
midterm exam was used to measure how well the students
had understood the designs taught.

In the second half of the semester, students carried out a
course project while learning an introduction to the prin-
ciples of interaction design [20]. The 16 undergraduates

in our class were randomly divided into 11 one- and two-
person teams. Teams were then examined to make certain
that each team met certain minimum requirements in order
to carry out a course project (e.g., at least one team mem-
ber must have satisfactory Java and OO experience).

The application to be developed was a source code edi-
tor that would highlight language constructs with colors or
other styles, mark the multiple occurrences of an identifier
(marking from now on), and update the display while code
is incrementally modified in the editor (parsing). These are
common visual features in modern program editors like the
Eclipse Java Editor, and teams were encouraged to study
existing editors for inspiration. Figure 1 shows two submis-
sions from our teams. The requirements for the project were
specified by the author, and the teams performed the de-
sign and implementation. The Structural Constraint Lan-
guage (SCL) [10] was chosen as the editor’s target lan-
guage because the author knows how to tailor SCL for use
in this project. An SCL parser component was provided to
the teams to obtain the constructs to be highlighted so that
the teams can focus mainly on the user interface behavior.

An example application from the Swing tutorial 1 (Fig-
ure 2) was identified as the most suitable candidate with
which the teams could start. The most useful solutions pro-
vided by the example are operations on a text pane, includ-
ing the creation of the text pane as well as how to insert
text into this widget and how to set visual styles to text re-
gions. SCL program constructs could be highlighted by set-

1 TextComponentDemo.java, about 400 lines of code.



Figure 2: The user interface of TextComponentDemo. The
text in the text pane is displayed with different styles and
attributes. The text area displays the edits made to the text
document. The status bar at the bottom shows the current
position of the caret (with respect to both the text document
and the text pane view).

ting the appropriate styles to positions returned from the
SCL parser. Marking could be implemented by registering
a caret listener on the text pane. When edits happen to the
SCL program, parsing can be automatically invoked peri-
odically to update the visual effects (e.g., once every char-
acter is changed or every 100 milliseconds). Such an auto-
matic incremental parsing strategy can be enabled by regis-
tering a document listener on the text document associated
with the text pane to detect changes.

4. Research Methods
A set of qualitative and quantitative data were gathered

from the course to gain some insight into the research ques-
tions raised in the beginning. These include students’ expe-
rience and background, list of Swing design topics taught,
midterm scores, project requirements specification, project
submissions, project reports, and project scores. Occasion-
ally, anecdotes the author observed during the course and
student interviews were also used as supporting evidence.

Since there has been little work on understanding this
area of framework use, the focus of this study was on us-
ing the data to search for tentative but reasonable hypothe-
ses and not on testing existing hypotheses. The empirical
method of building theories from case study research was

Design
topics

Details Examples/
Exercises/
Midterm(30)

GUI com-
position

GUI containment, sizing
and positioning, layout.

Y/Y/16

Common
widgets

text fields, buttons, menus,
dialogs, etc.

Y/Y/6

Event dis-
patching

Event queue, event versus
app threads, event loop.
Template design pattern.

Y/N/2

Event han-
dling

Event listeners. Observer
pattern.

Y/Y/3

Text pane Document and JTextCom-
ponent, styles for docu-
ment regions, document
listener, caret listener.

Y/N/1

MVC Model-View-Controller
and tradeoffs.

Y/N/0

Painting Painting in AWT and
Swing; customizing paint-
ing behavior.

Y/N/0

PLAF Internal design of AWT
Pluggable Look And Feel.
Abstract factory pattern.

N/N/2

Table 1: AWT/Swing design topics taught, their weights in
the midterm exam (with full mark of 30), and whether ex-
amples were used in teaching or homework assignments
were done.

first proposed in the social science literature [4] but it is
also applied in the software engineering discipline [19, 21].

A critical step in this kind of research is for the re-
searchers to become intimately familiar with the cases [4] in
order to detect patterns in the data reliably. The most time-
consuming task in our study was the detailed, critical eval-
uation of the code that the 11 teams submitted. This step is
necessary because the goal of this study is to understand the
effects of framework design knowledge on example-based
applications. Initially, the author categorized the cases by
design features. For example, to use the text pane, one must
know the fact that a document is associated with the text
pane. Thus the relationship between the text pane and the
document was considered as a framework design feature. A
problem with this approach is that it produced a long list of
design features for each submission, making it hard to see
patterns from the data. Eventually, the data were grouped
according to the requirements features, resulting in the data
in Table 2, which are further elaborated in Section 5.

Pattern detection from the data was an iterative process
of comparing and contrasting data from different teams.



Effectiveness in 
Product 

Implementation
(project score, 

feature evaluation)

Knowledge on 
Framework Design 

prior to Project
(midterm score, 
design topics)

Customization 
Methods

(composition v.s. 
callback)

Consideration of 
Non-functional 

Design Concerns
(MVC, performance)

Development 
Strategy 

(Features- v.s. 
Requirements-

Driven)

Independent Variables Dependent Variables

Figure 3: The variables (with measures in parentheses) and
relationships (edges) studied.

Typically, a pattern was first identified from a subset of the
cases and then verified against all the other cases. Statisti-
cal analyses as well as empirical evidence were then used to
further confirm the findings. Naturally, some patterns were
rejected. Eventually, a stable set of constructs and relation-
ships were identified (Figure 3). Based on these, a set of
hypotheses addressing our research questions were formu-
lated, which are reported in the next section.

It is important to note that the hypotheses derived in
the next section should be understood as applicable to
only example-based application development. In a previous
study, it was hypothesized that example-based techniques
are well-suited to use by beginning learners [21]. Motivated
by this and similar theoretical observations (e.g., [3, 17]), an
example-based teaching and learning strategy was adopted
in our course as well. The students were encouraged to
start the project by studying an example identified from the
Swing tutorial. In an interview with the author and the final
project reports, all of the 11 teams confirmed that they had
studied the example. Among the 10 design features iden-
tified from the example (not shown in this paper), 8 were
reused in project implementation. Thus we conclude that a
significant portion of the example has been reused in this
study. However, code inspection revealed that our students
did not copy-and-paste code from the example verbatim. In
particular, clone detection with two tools 2 found only ‘un-
interesting’ clones, for example, the boiler-plate code for
starting the event loop. Other than that, only one team’s

2 MOSS. http://theory.stanford.edu/ aiken/moss/: A System
for Detecting Software Plagiarism; SimScan. http://blue-
edge.bg/download.html: SimScan (Similarity Scanner) is a util-
ity for finding duplicated or similar fragments of code in large Java
source code bases. Last verified: Jan. 20, 2008

code contains verbatim reuse of a method from the exam-
ple. Instead, teams reused design features in the example
with modifications, indicating that the subjects did possess
some level of understanding of the design of these features.

5. Results
5.1. Framework design knowledge versus perfor-

mance in project implementation
Since our goal was to teach the internal designs of the

framework to help students succeed in the project, we would
expect a strong positive correlation between teams’ knowl-
edge about framework design and their performance in
project implementation. As shown in Figure 3, the design
knowledge about the framework is mainly measured by the
midterm score, which reflects a student’s mastery of the de-
sign topics taught (Table 1), and the project implementation
by the project score formulated on the basis of a detailed
evaluation of each project, which is summarized in Table 2.
While the midterm and project scores allow us to demon-
strate the correlation quantitatively, the qualitative data on
design topics and the detailed project evaluation provide
concrete evidence that helps us explain the nature of the
correlation constructively. Nonparametric statistical analy-
ses were used because not all data conform to normal dis-
tributions. Our quantitative analyses followed the statistics
procedures and the reporting format of [9].

Course projects were evaluated mainly according to how
well they implemented the required features. Each feature
was assigned one of four ranks 3, which is then multiplied
with a weight to obtain a final mark for the feature. The eval-
uation combined black-box testing of the submitted pro-
grams and code inspection by us. The code inspection al-
lowed us to obtain a detailed evaluation of project imple-
mentation. It also helped us detect correct parts of solutions
that would otherwise be masked by bugs. Finally, 10 per-
cent of the project mark was also allocated to common us-
ability concerns. (For example, widgets must be sized and
positioned properly when the top-level frame is resized; an
appropriate set of menus must be defined.)

Table 2 depicts the details of the project evaluation,
where teams are sorted in descending order of their over-
all project performance. In general, most teams did well in
the first 3 features (UI, Load Save, and Set styles), which
can be attributed to the detailed coverage on architectural
topics like GUI composition and event handling. The over-
all trend in Table 2 is that the higher-ranked teams tended
to work out larger numbers of features (the sum of required,
optional, and extra features), with better quality. Since each
of these features requires knowledge of different aspects

3 Feature not implemented (0), implemented with major problems (1),
implemented with minor problems (2), and implemented fully cor-
rectly (3).



Required Featuresb Optionalb,f #Extrag MVC Issues Rankh

Teamsa UIc Load
Save

Set
stylesd

Marking Parsinge Undo
Redo

Textpane
Actions

T1 C 3 3,S2 3 3,A 3 3 1 Yes T
T2* R 3 3,S3 1 1,M 3 4 Yes T
T3* R 3 3,S1 1 1,M 2 3 bugs T
T4 A 3 3,S1 3 1,M 1 3 UI T
T5 S 3 3,S1 3 3,A Yes T
T6 C 3 2,S1 1 1,M 2 Yes smells M
T7* C 3 3,S1 1 1,A smells M
T8* S 3 2,S1 smells L
T9 S 2 3,S1 1 L
T10* S 2 1,S1 L
T11 S 1 L
a Teams with or without a star consist of 2 and 1 member, respectively.
b Degree of implementation quality: 1: with major problems, 2: with minor problems, 3: fully correct.
c What happens to example UI: A: reused As is, S: Simplified, C: Customized, R: Replaced. These actions are sorted

in the ascending order of the amount of work involved. All teams are given 3/3 for this feature.
d S1: solution provided by example, S2 and S3: advanced solution learned elsewhere.
e How parsing is invoked when text changes: A: Automatically, M: Manually.
f Features present in example but optional to products.
g Number of extra features implemented beyond those in the example.
h Ranks of project: T: top, M: middle, L: low.

Table 2: Data analysis of 11 submitted projects.

of the framework, this would imply that the higher ranked
teams had better knowledge of the framework. On the other
hand, code inspection also revealed evidence that lower-
ranked teams have not understood the framework design
completely (see Issues column in Table 2). For example,
in one team’s code, after the document is changed, it is al-
ways explicitly passed back to the text pane. It seems that
the team is not certain that once established, the subject and
observer relation will persist unless it is changed explicitly.
In several other cases, instead of reusing, teams created a
new text style object whenever needed, unaware of the im-
pact of unnecessary object creation on performance.

Figure 4 depicts the average midterm score a team re-
ceived versus the project score. Spearman’s Rank-Order
Correlation Coefficient was used to measure the type and
strength of the linear relationship between a team’s midterm
exam score and project implementation score (with cor-
relation values close to 1 or -1 representing an exact lin-
ear relationship and values close to zero representing no
linear relationship). A strong 4, positive correlation was
found between a team’s performance in learning framework
designs and effectiveness in project implementation (with
rs= 0.707, which is significant at α = 0.05 level, where

4 According to [9] (pp. 164), a correlation coefficient larger than 0.5 is
considered strong.

rcrit= 0.535 for N = 11).
However, an rs2 value of 0.50 means that students’ per-

formance in learning framework designs accounted for only
50% of the observed variance in the project scores. This
correlation value implies that although the performance in
learning designs an important factor in predicting perfor-
mance in project implementation, other factors might have
contributed to the variation in project scores as well. In the
following, we analyze three possible factors.

One is effort. Through informal interaction with the
teams, the author knew that two specific teams did not de-
vote to the project as much effort as the rest of the class,
and consequently, achieved low marks in the project imple-
mentation. After these two teams were removed, an rs of
0.82 was obtained , which is significant at α = 0.05 level.
A larger rs2 value of 0.67 highlights more of the impact of
framework design learning on project implementation.

Another is the effectiveness of the midterm exam in de-
tecting the variance among students’ knowledge about the
framework. While the design topics on GUI composition,
common widgets, event handling, and text pane (Table 1)
have clearly contributed to the general success of most
teams in the 3 features of UI, Load Save, and Set styles
(Table 2), these features account for only about half of the
project score. Teams exhibited more variance in implement-
ing other features (marking, parsing, and undo/redo). Al-



Figure 4: The average team midterm exam score (testing
how well the team has learned the framework designs, max
30) and its correlation with project implementation score
(max 20).

though the knowledge required to implement these features
was taught and tested in the exam, maybe the test was not
critical enough to reveal the difference.

Yet another is the difference between individuals’ pro-
gram comprehension ability. Some students may have out-
performed others in understanding the details of the exam-
ple, which contributes to the difference in implementation.
Or students may vary in their ability in generalizing from
what they have learned to new cases (e.g., the implemen-
tation of marking and parsing essentially relies on knowl-
edge of two specific event listeners, which are special cases
of the general topic of event handling). Alternatively, these
features may be simply inherently hard for some students.
We will elaborate on this issue further later.

Irrespective of any other factors that may also contribute
to the difference in project implementation, an rs2 of 0.50
indicates that design knowledge about the used framework
is a major factor, if not the most important one. Based on
these analyses, we formulate our first hypothesis:
HYPOTHESIS 1: When learning to use a framework
from examples, the more architecture knowledge about
the framework the novice developers possess, the better
they will perform in adapting the examples. However, the
effectiveness of architectural knowledge on project imple-
mentation may vary among individuals due to difference
in their ability of performing program comprehension and
generalization.

In addition to project scores, the number of required fea-
tures that a team worked out is another measure of their
performance in project implementation (the Required Fea-
tures column in Table 2). If the numbers of required fea-
tures positively correlate with the final project scores, it
would increase our confidence in the correlation reported
(between framework designs learned and project perfor-
mance in terms of project scores). A Spearman’s Correla-

tion Coefficient was calculated between project scores and
number of required features and a strong, positive corre-
lation was found between the two conditions (rs = 0.714,
which is significant at α = 0.05 level, with rcrit= 0.535 for
N = 11). This provides some confidence that our project
scores indeed reflect team performance.

Table 2 shows that 10 teams were able to create a de-
cent UI, load/save, and set styles for an SCL file. But only
3 teams correctly implemented occurrence marking (using
CaretListener). Code inspection revealed that 4 other teams
implemented it only partially correctly because they used a
MouseListener. Only 3 teams were able to correctly imple-
ment automated parsing, which requires good knowledge
about AWT/Swing’s event dispatching. All other teams re-
quired a user to explicitly invoke the parsing function.

While searching for possible explanations for this dif-
ference in implementing these features, it was noticed that
our students seemed to do better with framework features
that can be accessed by function calls than features whose
customization requires callbacks. In Table 2, the first 3 fea-
tures from the left can be implemented mainly by function
calls, and the next 3 require callbacks. The average ranks
that the 11 teams achieved for these features were calcu-
lated. Using the average ranks, a one-tailed Mann-Whitney
U test between the two groups of features (calls versus call-
backs) was performed, and the result was significant (U1=0,
equal to the one-tailed critical value 0 of Mann-Whitney U).
This provides some supporting evidence that function call
features indeed are implemented better than callback ones.
Maybe this is due to the fact that our students are more fa-
miliar with function calls than callbacks. Another reason
may be that features that involve callbacks participate in
more complex interactions in the framework, and thus their
usage simply requires deeper knowledge of the framework
in general. However, we must note that our teams have been
encouraged to implement as many features as possible, and
thus it is less likely that the difference is caused by the lack
of emphasis in requirements of the callback features.
HYPOTHESIS 2a: Framework features whose usage re-
quires callbacks are more difficult to learn and modify
than ones that require function calls.
HYPOTHESIS 2b: The more design knowledge about the
framework it requires to use a framework feature, the
more difficult it is to learn and modify.

One popular design consideration for GUI applications
is the separation of Model, View, and Controller. Our teams
were encouraged to structure their editors into the model-
view-controller paradigm. However, through code inspec-
tion and project reports, only 4 teams were identified as
having attempted using MVC in their code. One possible
explanation is that for beginners, MVC, and non-functional
concerns in general, come after functionality understand-
ing. It is likely that students are already so overwhelmed



with understanding framework functionality that they don’t
have the time to work on non-functional concerns.
HYPOTHESIS 3a: In the early phase of learning a frame-
work, with limited time available, novice learners are more
likely to focus on functionality than other non-functional
concerns like structure or performance.

Consequently, effectiveness in addressing non-
functional concerns could be a good predictor of func-
tional quality but not vice versa. Interestingly enough, two
teams who did not use MVC were also top-ranked (T3 and
T4 in Table 2).

To gather further supporting evidence, a one-tailed
Mann-Whitney U test was performed to test whether
teams who used MVC also achieved higher ranks in
the feature of parsing (Table 2). The result is signifi-
cant (U1=3, less than the critical value 4 at α = 0.05
for n1 = 4 and n2 = 7). An eta square of 0.43 indi-
cates that MVC accounts for 43% of the variance in the
ranks of the parsing feature, which is fairly strong. In addi-
tion, in several other cases, we also observed that several
top-performed teams were able to make use of frame-
work features that would make a difference in efficiency,
which other teams did not use. Based on these, we formu-
late the following hypothesis:
HYPOTHESIS 3b: Products which have considered
non-functional design concerns like structure and perfor-
mance are more likely to implement advanced require-
ments than ones that don’t.

In trying to understand what caused the differ-
ence among teams, it was noticed that some teams had
tried to add many nice, but not required, features to
their products, while others seemed to be more conser-
vative, first making sure that the requirements be satis-
fied. This can be seen from the data in Table 2, where
T2, T3, and T6 seem to have adopted a feature-driven ap-
proach, implementing 4, 3, and 2 extra features, respec-
tively. Moreover, T2 and T3 also implemented a new
UI from scratch. (The right of Figure 1 shows one of
them.) T6, although did not implement a new inter-
face, chose to customize the example UI, which still
required more work than simply using the UI as is or sim-
plifying it. In contrast, the other 8 teams were more
conservative and tried to reuse the example as much as pos-
sible. The three teams (T1, T4, and T5) that did the best
in the two advanced features (occurrence marking and au-
tomated parsing) made only minimal changes to the ex-
ample UI. T4 even kept the example UI without changing
anything. Since much can be reused from the exam-
ple, given the limited amount of time available for the
project, the conservative reuse approach seems to work bet-
ter than the feature-driven approach because it allowed
teams to reuse the example UI, saving time to focus on re-
quired features rather than nice UI.

A one-tailed Mann-Whitney U test was performed using
the data of the first 7 teams. The test result indicates that
teams adopting a conservative reuse approach (T2, T3, T6)
achieve significantly higher total ranks in the two advanced
features than the other 4 teams (T1, T4, T5, T7). The ef-
fect size of this relationship is measured by an eta square
of 0.75 obtained with the Rank Sums Test. Thus the adop-
tion of a conservative reuse approach accounts for 75% of
the variance in implementing the two advanced features.
HYPOTHESIS 4: When the example contains the re-
quired features, under a tight schedule, a conservative
reuse approach to development can be more effective in
fulfilling requirements than a feature-driven approach.

5.1.1. Potentially confounding factors: team size, aca-
demic programming experience, and effort Our 16 stu-
dents were divided into 11 teams of 1 or 2 members. One
concern is whether the 2-member teams performed better
than the 1-member ones. In Table 2, the two types of team
seem fairly equally distributed among the top, middle, and
low ranks. The chi-square test for this yielded an Xobt

2 of
0.136, which is not significant at the α = 0.05 level where
Xcrit

2 is 5.99 for df = 2. This provides evidence that in
our setting, team size has no effect on project performance.

We were also concerned that the effectiveness of our
teams might have more to do with the level of experi-
ence that the team members had with implementing similar
projects than with the variables under study in our experi-
ment. Since none of our students had either prior industrial
programming experience or experience with AWT/Swing,
we measured their academic programming experience in
terms of the academic year they were in. We partitioned
the students’ project scores into two groups according to
their 3rd and 4th year status. We then performed a two-
tailed Mann-Whitney U test to determine whether the se-
nior group (M = 13.80, SD = 4.17) and the junior group
(M = 13.55, SD = 4.16) performed significantly differ-
ently in the project in terms of the received scores. The re-
sult is insignificant, with Uobt= 15, greater than U crit= 3
at α = 0.05 level for n1 = 5 and n2 = 6. This test provides
some evidence that academic programming experience has
an insignificant effect on project scores.

Yet another concern is that a team’s performance in the
project might have been influenced more by their effort
than the amount of design knowledge that the students have
learned about the framework. However, this appears un-
likely in our case for two reasons. First, most of our stu-
dents were motivated to work hard on the projects, and most
teams reported that most of their effort was spent during
the last several weeks of the semester. This implies that the
variations among team effort should not be too large. Be-
cause of the small class size and the close interaction be-
tween the author and the students, we believe that this fac-
tor is within control. Second, design knowledge is critical to



beginning learners. If they had not learned enough from lec-
tures, it would be extremely hard to make up by spending
extra effort on their own. In other words, we believe that in
the scenario of learning frameworks with limited time avail-
able, design knowledge dominates effort.

5.2. How can framework designs be better taught?
We observed that not all the example features were used

by all teams (Table 2). Our teams tended to focus on features
most useful to them, and would replace features that they
were not confident with by alternative solutions that they
were familiar with. For example, two teams used a KeyLis-
tener to define short keys instead of the built-in support in
the framework (keymap). A similar case is with actions. In
the original example, actions were used consistently to cre-
ate menu items. Some teams completely removed actions
and used ActionListener instead, which they were presum-
ably more familiar with. Finally, all but two top teams re-
moved the redo/undo feature from the example. Both teams
who did include redo/undo modified it, and both made mi-
nor mistakes in their modifications.

Unlike the design topics we taught to students (Table 1),
which for the most part were focused on architecture, these
features are local to individual components of the frame-
work. The large number of components make it impossible
to cover all of them in detail. Perhaps in addition to teach-
ing framework architecture, a set of component-level fea-
tures could be selected according to the need of the project
and taught in detail as well.
Lesson 1: In addition to the architectural design of the
framework, further guidance is needed to facilitate the use
of component-specific features, the coverage of which may
be determined according to the need of the course project.

We also observed that our students did not perform
equally well across the design topics taught. For example,
all 11 teams were able to produce a well-behaved UI, ei-
ther by customizing the example UI or creating a com-
pletely new one (Figure 1). But only a few teams did well
in features that require knowledge of DocumentListener,
CaretListener, and event dispatching. One difference in our
way of teaching these design topics is whether a program-
ming exercise was used to reinforce learning (see Table 1).
Lesson 2: Programming exercises can be used as an ef-
fective mechanism for reinforcing the learning of individ-
ual framework features. Whether designing exercises for a
particular framework feature can be guided by such char-
acteristics of the feature as whether it involves callback
or whether its usage requires ‘deep’ knowledge of frame-
work internals.

In light of Hypothesis 4, in retrospect, some of our stu-
dents could have done better if they had been advised to fo-
cus on the example, at least initially in the project, before
moving on to other features.

Lesson 3: When running a course project based on an ex-
ample that contains most of the features needed by the
project, students should be reminded not to move too far
away from the example.

6. Threats to Validity
This section discusses threats to validity that can affect

the results reported in Section 5, following a well-known
template for case studies [23].

Regarding construct validity, threats can be due to the
measurement performed. One tactic to enhance construct
validity is triangulation: the use of multiple sources aimed at
corroborating the same fact or phenomenon. Our study ap-
plied data triangulation by including two measures (project
scores and number of features implemented) for the same
aspect of interest (performance in project).

Threats to internal validity may confuse spurious rela-
tionships with correct causal relationships. We undertook
qualitative and quantitative analyses to test the effects of
potentially confounding factors (differences in team size,
effort spent, and previous experience) which could be rival
explanations to our findings. As pointed out in section 5.1.1,
for our particular setting, the three confounding factors do
not appear to have confounded our results.

Threats to external validity are related to the extent to
which our findings can be generalized. First, AWT/Swing
is clearly a typical framework and our observations on
learning framework should not be specific to this particular
framework. Second, our project is more closely related to
real world applications than toys. Third, although our sub-
jects are novices, the problems they encountered would also
be problematic for expert developers without experience
with the framework. Even if further investigation showed
that the validity of our hypotheses held only for novices,
they can still be significant since experts are always scarce.

Regarding reliability validity, all of the data referenced
in this paper are available from the author, including project
submissions (with author identity removed), midterm ex-
ams, student scores for both midterm and project, charts
for statistical analysis. So others can replicate the analysis.
The statistical conclusions described in Section 5 were sup-
ported by proper tests, Spearman’s Rank-Order Correlation
Coefficient for analyzing correlation, Mann-Whitney U and
Chi-sqaure for testing independence.

7. Conclusion
While software is increasingly being developed using li-

braries and frameworks, many developers are still relying
on a trial and error approach to reuse. Such practice is costly
and the outcome is unpredictable, producing software that is
buggy, hard to change, and fragile. It is not entirely clear ei-
ther how a more disciplined, design-driven approach can be
used in framework learning. This paper analyzes the data



gathered from a framework-based course project where stu-
dents were first systematically taught the architectural de-
signs of the framework. The contribution is a set of hypothe-
ses, along with supporting evidence, that characterize the
various effects of framework designs on project outcome.

The two questions raised in the introduction of this paper
are addressed as follows. Hypotheses 1, 2a, 2b, 3a, 3b and
4 address Question 1. Overall, students who had learned the
framework designs better exhibited stronger ability in cor-
rectly adapting example solutions. Framework designs that
require callbacks and deeper behavioral customization were
more difficult to learn than those that involve only function
calls. Initially, novice learners appeared to focus on learn-
ing functional aspects of the framework than non-functional
aspects. Finally, a conservative reuse strategy helps novice
learners focus on gaining a comprehensive understanding of
the example rather than being distracted by ‘nice’ features.
Question 2 is addressed by the three lessons learned, which
point out how framework designs can be taught more effec-
tively, e.g., by balancing the allocation of teaching effort be-
tween framework architecture and component-specific fea-
tures, and by designing programming exercises. A difficulty
with teaching framework designs is the limited amount of
time available. Teaching time could be more effectively
used by reducing the time spent on those framework de-
sign topics not immediately useful to the course project, for
example, in our case, the topics of PLAF, painting, or MVC
in Table 1. Overall, it is encouraging to see that after only
20 hours of lectures, our students could produce programs
that exhibit features of industrial products. We feel that sim-
ilar practice is applicable to industry.

Acknowledgments

The author is grateful to the three anonymous reviewers,
H. James Hoover, Chandan Rupakheti, and Patricia Jablon-
ski for their useful comments on earlier drafts of this paper,
Sumona Mondal for patiently answering my statistics ques-
tions, and students of EE 408, Fall 2007 for their hard work.

References
[1] M. Antkiewicz and K. Czarnecki. Framework-Specific Mod-

eling Languages with Round-Trip Engineering. In Proceed-
ings of MoDELS ’06, 2006.

[2] D. S. Brandt. Constructivism: Teaching for Understanding
of the Internet. Commun. ACM, 40(10):112–117, 1997.

[3] M. T. H. Chi, M. Bassok, M. Lewis, P. Reimann, and
R. Glaser. Self-explanations: How Students Study and Use
Examples in Learning to Solve Problems. Cognitive Sci-
ence,, 13:145–182, 1989.

[4] K. M. Eisenhardt. Building Theories from Case Study Re-
search. Academy of Management Review, 14(4):532–550,
1989.

[5] G. Fairbanks, D. Garlan, and W. Scherlis. Design Fragments
Make Using Frameworks Easier. In Proceedings of OOP-
SLA’06, pages 75–88, 2006.

[6] G. Froehlich, J. Hoover, L. Liu, and P. Sorenson. Hooking
into Object-Oriented Application Frameworks. In Proceed-
ings of ICSE’97, Boston, MC, May 1997.

[7] D. Gangopadhyay and S. Mitra. Understanding Frameworks
by Exploration of Examplars. In Proceedings of 7th Interna-
tional Workshop on Computer Aided Software Engineering
(CASE-95), pages 90–99, July 1995.

[8] J. Hautamäki and K. Koskimies. Finding and Documenting
the Specialization Interface of an Application Framework.
Softw. Pract. Exper., 36(13):1443–1465, 2006.

[9] G. W. Heiman. Basic Statistics for the Behavioral Sciences
(Fifth Edition). Houghton Mifflin Company, 2006.

[10] D. Hou and H. J. Hoover. Using SCL to Specify and Check
Design Intent in Source Code. IEEE Trans. Software Eng.,
32(6):404–423, June 2006.

[11] D. Hou, K. Wong, and H. J. Hoover. What Can Program-
mer Questions Tell Us About Frameworks? In Proceedings
of IWPC ’05, pages 87–96, 2005.

[12] R. E. Johnson. Documenting Frameworks with Patterns. In
Proceedings of OOPSLA 92, Vancouver, Canada, 1992.

[13] R. E. Johnson. Frameworks = (Components + Patterns).
Commun. ACM, 40(10):39–42, 1997.

[14] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz. An
Empirical Study of Software Reuse vs. Defect-Density and
Stability. In Proceedings of ICSE ’04, pages 282–292, 2004.

[15] M. Morisio, D. Romano, and I. Stamelos. Quality, Productiv-
ity, and Learning in Framework-Based Development: An Ex-
ploratory Case Study. IEEE Trans. Softw. Eng., 28(9):876–
888, 2002.

[16] S. Moser and O. Nierstrasz. The Effect of Object-Oriented
Frameworks on Developer Productivity. IEEE Computer,
29(9):45–51, 1996.

[17] M. B. Rosson, J. M. Carrol, and R. K. E. Bellamy. Smalltalk
Scaffolding: a Case Study of Minimalist Instruction. In CHI
’90: Proceedings of the SIGCHI conference on Human fac-
tors in computing systems, pages 423–430. ACM, 1990.

[18] K. Schneider and A. Repenning. Deceived by Ease of Use:
Using Paradigmatic Applications to Build Visual Design En-
vironments. In DIS ’95: Proceedings of the 1st conference on
Designing interactive systems, pages 177–188. ACM, 1995.

[19] C. B. Seaman and V. R. Basili. An Empirical Study of Com-
munication in Code Inspections. In Proceedings of ICSE ’97,
pages 96–106, Boston, MC, 1997.

[20] H. Sharp, Y. Rogers, and J. Preece. Interaction Design: Be-
yond Human-Computer Interaction (Second Edition). Addi-
son Wesley, March 2007.

[21] F. Shull, F. Lanubile, and V. R. Basili. Investigating Reading
Techniques for Object-Oriented Framework Learning. IEEE
Trans. Software Eng., 26(11):1101–1118, 2000.

[22] K. Walrath, M. Campione, A. Huml, and S. Zakhour. The
JFC Swing Tutorial (Second Edition). Addison Wesley,
February 2004.

[23] R. K. Yin. Case Study Research: Design and Methods (Third
Edition). SAGE Publications, London, 2002.


